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Thermal Conductivity of Pure Monoisotopic Silicon 
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The thermal conductivity of pure monoisotopic silicon is estimated by two 
methods, which give similar results. One estimate, based on the observed 
thermal conductivity of monoisotopic germanium, yields a maximum of 66 
W, cm- 1. K-  1 at 22 K. The other estimate, based on measurements of natural 
silicon and on the theoretical isotope scattering rate, yields 75 W �9 cm- i .  K -  i 
at 22 K, an increase of only 45% over the natural crystal. These values are for 
crystals of approximately 0.5 cm diameter; smaller crystals yield lower values of 
the maximum conductivity and smaller isotope effects. Silicon cooled to liquid 
hydrogen temperature seems promising for high-irradiance laser mirrors. The 
small gain obtained by using monoisotopic silicon would be substantially greater 
in cases when the generated phonon distribution is athermal and weighted to 
higher frequencies. The effective heat transport could then be increased by as 
much as a factor 60 through the use of rnonoisotopic silicon. 
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defects; silicon; thermal conductivity. 

1. I N T R O D U C T I O N  

The lattice conductivit ies of crystalline insulators  and  intrinsic semiconduc-  
tors reach their max ima  at low temperatures.  Near  that max imum,  the 

thermal  conductivi ty,  l imited by b o u n d a r y  scattering and  anha rmon ic  
interactions,  is very sensitive to point  defects, even to the mass f luctuat ions 

due to the isotopic composit ion.  Maximiz ing  the thermal  conduct ivi ty  at 
those temperatures  requires a crystal which is no t  only pure and  structur- 

ally perfect, bu t  is also composed of atoms of a single isotope. 
Silicon has a high thermal  conduct ivi ty  at low temperatures and  can be 

readily manufac tu red  as single crystals as well as deposited on  surfaces. I t  
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is thus of interest as a material for high-irradiance laser mirrors as well as 
for substrates in high-power integrated-circuit elements. It is of interest to 
estimate whether the heat transport properties can be significantly en- 
hanced by using silicon crystals of a single isotope rather than silicon of 
natural isotopic composition. This paper estimates the maximum thermal 
conductivity which can be attained, and the temperature of the maximum, 
by using monoisotopic silicon. 

The effects of isotopic composition on the low-temperature thermal 
conductivity have been studied experimentally for solid helium [1], lithium 
fluoride [2, 3], and germanium [4]. The first case differs from the others, 
since quantum-mechanical effects influence the stability of the lattice, and 
the lattice is distorted around each isotopic impurity. The studies on lithium 
fluoride have confirmed the theoretical model of the isotope scattering of 
phonons [5], particularly since the parameters describing the anharmonic 
interactions also fit the high-frequency ultrasonic attenuation [6]. The 
earliest experiment, comparing natural and monoisotopic germanium, is 
most relevant for the present purpose, since germanium and silicon have 
many similarities. 

Geballe and Hull [4] found that the thermal conductivity of germa- 
nium at its maximum is higher, by a factor 3, for a monoisotopic specimen 
than for natural germanium. This increase, though substantial, is not as 
large as had been expected. This has been explained in terms of the unusual 
phonon dispersion of germanium. In the theoretical expression for the 
intrinsic thermal resistance, one must replace the Debye temperature 0 by 
an effective value 0 /a ,  which corresponds to the lowest phonon frequency 
at the zone boundary. Germanium, and also silicon, have each a transverse 
acoustic branch with a relatively low value of 0 /a .  

Two methods are used here to estimate the thermal conductivity of 
monoisotopic silicon. The first is simply to scale the results of monoisotopic 
germanium to silicon, assuming that silicon and germanium are similar in 
all respects except atomic mass and Debye temperature. The validity of the 
scaling assumption is critical for that method. 

The other method relies on the existence of extensive measurements of 
the thermal conductivity of isotopically natural silicon, both pure and 
doped [7], together with Holland's detailed theoretical analysis of the 
thermal conductivity of silicon and germanium [8]. This analysis includes a 
theoretical estimate of the isotope scattering. A similar study, by 
Glassbrenner and Slack [9], emphasizes higher temperatures. One can then 
remove the isotope scattering and repeat the calculation, so as to obtain the 
thermal conductivity of monoisotopic silicon. 

The scaling method suggests a maximum thermal conductivity of 
monoisotopic silicon of 66 W.  cm -1.  K -1 at 22 K, compared to an 
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observed value of 52 W .  cm-  ~. K-1 for natural silicon. In the case of 
germanium, the conductivity was found to increase by a factor 3 [4]. The 
increase of 27% estimated for silicon is smaller because the natural isotope 
mass variation is smaller. 

The second method, that of removing the isotope scattering from the 
observed thermal resistance of silicon, leads to a maximum value of 75 
W �9 c m - 1 .  K-~ at about the same temperature for monoisotopic silicon, an 
increase of 45% over the natural specimen. The two methods are thus in 
reasonable accord. 

The results of both methods are size-dependent and refer to large 
crystals used in the measurements (about 0.5 cm in diameter). The relative 
change between natural and monoisotopic silicon would be somewhat less 
for crystals of much smaller dimensions. It is also assumed that the crystals 
are otherwise perfect. The difference between Holland's best sample of 
natural silicon (52 W .  c m - 1 .  K-1)  and one of Glassbrenner and Slack (35 
W .  cm -1 .  K - I )  show that unknown imperfections can be at least as 
important as isotopic composition. 

2. SCALING FROM M O N O I S O T O P I C  GERMANIUM 

In the regime where phonon mean free paths are limited by the 
shortest specimen dimension L, the thermal conductivity is of the form [10] 

~t = AT3L/O 2 (1) 

where A is a calculable constant and 0 the Debye temperature. At low 
temperatures near the maximum, the mean free path due to anharmonic 
Umklapp processes is of the form [10] 

1 / I, = B @80/Mv2)bxe -  o/~r (2) 

where B is a constant, k 8 is the Boltzmann constant, M is the atomic mass, 
v is the transverse phonon velocity, b is the reciprocal lattice constant, 
x = h~o/ksT is the reduced phonon frequency, and 0 / a  is a characteristic 
temperature defined in terms of the lowest phonon frequency at the zone 
boundary (r by h~o o = k~O/o~. The constant B is of order unity. It can be 
estimated only approximately from theory but can be deduced empirically 
from experimental data. 

At the thermal conductivity maximum, l u = L at the reduced fre- 
quency x = 3. Thus from Eqs. (1) and (2), at the temperature T,,, 

I / L =  3Bb(O/To)exp[ - O/o~Tm] (3) 
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where T O = M v 2 / k B ,  so that 

T,.  = ( O / a ) / l n ( 3 B b L O /  To) (4) 

The factors in the logarithmic term need not be estimated with high 
precision. For large specimens, bL~106, while O/To, -~ lO - 2  and 3B~1. 
Thus T m = 0 / l l a .  In the case of germanium, 0 / a  = 120 K (from neutron 
diffraction data), so that T m should be about 11 K. The observed value is 
about 15 K. 

Taking the thermal resistivity at the maximum to be twice the resistiv- 
ity due to boundary scattering alone, it becomes 

~,~ = �89 2 (5) 

and since T m cc O / a a: O, 

A m ~ O L / [ l n ( B L ) ]  3 (6) 

where fl  = 3 B b O / T  o. The foregoing assumes that the similar materials 
germanium and silicon have the same proportionality constants, because 
they have identically shaped dispersion curves. 

We can now estimate A m of silicon from ~,, of monoisotopic germa- 
nium. The latter has a value of 38 W.  c m - l .  K- i ,  and since the Debye 
temperatures of silicon and germanium are in the ratio 1.75 : 1, we estimate 
A m of monoisotopic silicon to be 66 W.  c m - l .  K - 1  With 0 / a  for silicon 
being 220 K, T m should be approximately 20 K. The latter estimate is 
confirmed by measurements of natural silicon [7, 8], which show a peak at 
22 K. Since isotopes are not expected to shift T m, 22 K is our best estimate 
of T m. In summary, the scaling of silicon from germanium indicates a 
maximum value of about 66 W- cm- 1. K-  l at 22 K. 

3. CALCULATIONS FROM M E A S U R E M E N T S  OF 
NATURAL SILICON 

Holland [8] made a detailed analysis of the thermal conductivity of 
natural pure silicon that accurately reproduced his experimental measure- 
ments. He used boundary scattering, estimated from first principles and 
confirmed by observation; isotope scattering, also estimated from theory 
[5], and an empirically adjusted value for anharmonic scattering, which 
included both normal and Umklapp processes. Though the anharmonic 
interaction differs from the theoretical form used in the scaling method, the 
functional form matters little to our calculations because we are concerned 
with the thermal conductivities only at one temperature. 
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The most obvious way of making our estimation would be to repro- 
duce Holland's computer program and rerun it without isotope scattering. 
The following approximate procedure is equivalent, but less time consum- 
ing. The thermal conductivity is of the form [8] 

Xa:LTgf dxx4eX(eX-1)-2[l+ax2f(T)+cr4x4] -' (7) 

where axZf(T) is due to anharmonic processes, and cT4x 4 is due to isotope 
scattering. Holland calculated the relaxation rate due to isotope scattering 
as 

1/'ris o = 1.32 • 10-45o34 

and for anharmonic processes, he found 

1/'ran h ----- 3.8 • 10-24602T 3 

(ins -1 ) (8) 

(in s - 1) (9) 

where T is expressed in K, e in rad.  s - ' .  Since x = ho~/kBT, these two 
processes are of equal strength when 

x 2 = 0.17T (10) 

Substituting T~ = 22 K for T, we find x = 1.9. At higher frequencies, 
isotope scattering will greatly reduce the phonon mean free path. Ignoring 
boundary scattering, isotope scattering will thus reduce the conductivity in 
the approximate ratio 

f01"9j2(x) dX/foomJ2(x) dx --- 1.72/3.29 (11) 

where j2(x ) = x4e~/(e x -  1) 2. Values of the definite integrals are from the 
N.B.S. Tables of Transport Integrals [11]. 

The additional effect of boundary scattering can now be treated by the 
additive resistance approximation. The thermal resistance due to bounda- 
ries is approximately half the total resistance at the maximum. Hence, 

Wis ~ (3C (3.29)-1 + (1 .72) - '=  0.885 (12) 

and 

W 0 cc (3 .29) - '+  (3.29)- ' = 0.608 (13) 

give the relative values of the thermal resistivity with and without isotopes, 
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respectively. The monoisotopic sample at 22 K should therefore have a 
thermal conductivity larger than the pure natural sample by a factor of 
1.45. Since the natural sample has a conductivity of 52 W.  cm- t .  K-  t, the 
monoisotopic sample should have a maximum conductivity of 75 W- 
cm-1.  K-~ at 22 K. 

4. CASE OF SMALL CRYSTALS 

So far we have considered crystals of relatively large dimensions 
(L~0.5 cm). If L is substantially reduced (say, by a factor of 10), T m 

increases only slightly (by a factor of 10//7) because of its logarithmic 
dependence on L, while ?t m would be approximately 20 W.  c m - i .  K-1. 
The sensitivity to isotopes would diminish slightly, since x, the threshold 
frequency where point-defect scattering dominates, varies as T 1/2. We 
would therefore still expect almost a 20% change between natural and 
isotopically pure specimens. However, further reduction in size by another 
factor of 10 would shift T m by a factor of 1.7 to 1.8, giving T m = 50 to 55 K. 
At that temperature, the isotope dependence would be less than 10%. 

5. APPLICATION TO CRYOGENICALLY COOLED 
LASER MIRRORS 

Silicon is a good heat conductor at low temperatures even in its natural 
isotopic form. The increase expected from monoisotopic silicon is small 
(25-45%) and may not be worth the additional effort except in special 
ca se s .  

For maximum thermal conduction at room temperature and above, 
where the effect of isotopes is unimportant, it would be reasonable to 
choose a material with a high Debye temperature 0 (low atomic mass), 
since the thermal conductivity at those temperatures varies as 03. Accord- 
ingly, diamond, silicon carbide, and berylia are often considered. For 
conduction at low temperatures, however, a high Debye temperature is no 
longer advantageous. At very low temperatures, X varies inversely as 03, 
and a low Debye temperature is preferable. Though at the conductivity 
maximum ?t varies roughly as 0, it also varies as L, the smallest linear 
dimension of each crystal or grain. Silicon therefore has an advantage over 
silicon carbide or berylia simply because the crystal size can be enlarged 
while 0 is still fairly high. 

Consider a laser mirror in which the heat load to be dissipated may be 
as high as 100 W.  cm -2 (irradiance 1=  20 kW. cm -2 and absorptance 
A = 5 )< 10 -3, for example). At very low temperatures, the concept of 
conductivity is inappropriate because the phonons travel ballistically from 
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surface to surface. If there is a temperature drop AT across two surfaces 
separated by distance L, the heat flow per unit area is Q = X A T / L .  Since X 
is proportional to L, Q is independent of L. An analogy is radiative heat 
transport between two parallel surfaces, which is also independent of the 
separation. However, Q is proportional to T3AT. The advantage of the low 
temperatures is that the mirror need not be particularly thin, so better 
provisions can be made to improve heat transfer from the solid to the 
cooling fluid. 

The operating temperature should therefore be approximately 20 K. 
With a thickness of 0.5 cm and a heat current of 100 W �9 cm -2, AT would 
be approximately 1 K. That temperature drop seems quite reasonable; the 
real question is whether an adequate heat transfer can be made between the 
solid and the liquid coolant. Cryogenic liquids have less latent heat and less 
heat capacity than ordinary liquids, but the high thermal conductivity of 
the solid allows a thicker construction with wider cooling channels and 
more surface area. 

The use of monoisotopic silicon would seem to provide only a modest 
advantage if it is assumed that the phonons have a thermal distribution at 
all points in the crystal. If, however, the losses on the reflecting surface 
generate extremely high frequency phonons, the picture would change 
radically. 

Isotope scattering varies as the fourth power of frequency. The peak in 
the thermal energy content at temperature T occurs at a frequency corre- 
sponding to 4 T. Thus at 20 K, most of the thermal energy is in the 80 K 
phonons, and our estimate of isotope effects is based on that assumption. 
If, however, the mirror surface generates mainly 220 K phonons (these 
modes are numerous), the isotopes would reduce the mean free path by a 
factor 60. This substantial reduction in heat flow could be avoided by the 
use of monoisotopic silicon at cryogenic temperatures. 
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